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Abstract
We consider the effective mass model of spinless electrons in single-wall carbon
nanotubes that is equivalent to the Dirac equation for massless fermions. Within
this framework we derive all possible energy independent hard wall boundary
conditions that are applicable to metallic tubes. The boundary conditions are
classified in terms of their symmetry properties and we demonstrate that the
use of different boundary conditions will result in varying degrees of valley
degeneracy breaking of the single-particle energy spectrum.

1. Introduction

Carbon nanotubes are the subject of intensive research, motivated by the desire to use
their unique physical and electronic properties in the development of nanoscale electrical
devices [1, 2]. The electronic properties of nanotubes follow from the band structure of
graphene—a two-dimensional (2D) sheet of graphite—which is a semi-metal, having a
vanishing energy gap at the six corners,K points, of the hexagonal first Brillouin zone. A single-
wall nanotube may be thought of as a graphene sheet rolled up to form a nanometre-diameter
cylinder. Periodicity around the circumference results in quantized transverse wavevectors
leading to metallic or semiconducting behaviour depending on whether the K-point wavevector
K is an allowed wavevector.

While the energy spectrum of an infinitely long tube will be continuous,a finite tube should
possess discrete energy levels corresponding to standing waves typical of a confined quantum
particle. Evidence of discrete levels was seen in transport measurements [3, 4] a few years ago;
this was followed by the direct observation of sinusoidal standing wave patterns by scanning
tunnelling microscopy [5, 6]. The measured wavelength of the standing waves λ ∼ 0.75 nm,
about three times larger than the lattice constant a ≈ 0.25 nm, corresponded to wavevectors
near the K point K. More recently, Coulomb blockade measurements on carbon nanotube
quantum dots [7–9] have found evidence for fourfold periodicity of the spectra that is in
agreement with expectations based on spin and K-point degeneracy, although the experiments
appeared to show varying degrees of degeneracy breaking. A number of authors [10–14] have
modelled finite-length nanotubes in order to describe the atomic scale variation of standing
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waves patterns and the opening of an energy gap displaying an oscillating dependence on the
tube length. Rather than concentrating on one particular model of a boundary, we aim to
describe all possible energy independent hard wall boundary conditions for metallic single-
wall nanotubes. We will classify the boundary conditions in terms of their symmetry properties
and show how different boundary conditions produce varying degrees of K-point degeneracy
breaking.

In the scanning tunnelling microscopy measurements of [6] an additional slow spatial
modulation of the standing waves was observed. It was interpreted as being a beating envelope
function with wavevector q, |q| � |K|, resulting from the interference of left and right
moving waves with slightly different total wavevectors K ± q. Theoretically, the effective
mass model [15–18] provides a reliable analytical description of the electronic structure near
the K point where the total wavevector is k = K + q and the dispersion relation is linear:
E = sv|q|; v is the Fermi velocity and s = ±1 for the conduction and valence band,
respectively. For spinless electrons, the envelope wavefunction �(q, r) has four components
corresponding to two inequivalent atomic sites in the hexagonal graphite lattice (‘A’ and ‘B’)
and to two inequivalent K points in the hexagonal first Brillouin zone. The resulting eigenvalue
equation for � is the massless Dirac equation,

−ivα · ∇� = E�; α =
(

σ 0
0 −σ

)
; σ = eiησz/2

(
σx ı̂ + σy ̂

)
e−iησz/2, (1)

where the role of spin (‘pseudo-spin’) is assumed by the relative amplitudes on the A and B
atomic sites: σ is a vector in the (x, y) plane rotated by the chiral angle η of the tube. Also,
v = (

√
3/2)aγ is the Fermi velocity, a is the lattice constant of graphite and γ is the nearest

neighbour transfer integral.
In this paper we consider the effective boundary conditions for the envelope function� in

a finite-size carbon nanotube. Since the effective mass model for � corresponds to the Dirac
equation, we begin by deriving all possible energy independent hard wall boundary conditions
for the Dirac equation. We write them in terms of a small number of arbitrary parameters,
mixing angles, that describe mixing between boundary conditions with different discrete
symmetries. Then, in order to illustrate the meaning of the general boundary conditions,
we evaluate the resulting energy level spectra for non-interacting electrons in finite-length
metallic nanotubes and the corresponding standing wave envelope functions. To anticipate a
little, we find that energy independent hard wall boundary conditions for the Dirac equation
may be expressed in general terms as

� = M�; M2 = 1; {nB · α,M} = 0, (2)

where M is a Hermitian, unitary, 4×4 matrix, M2 = 1, with the constraint that it anticommutes
with the operator nB · α, proportional to the component of the current operator normal to the
interface, nB is the unit vector normal to the interface. As explained in the appendix, we
find four possible linear combinations of matrices satisfying these constraints on M , which,
assuming nB is a vector confined to the (x, y) plane, may be written in terms of a small number
of arbitrary parameters:

M1 = cos�(I� ⊗ n1 · σ) + sin�(�z ⊗ n2 · σ), (3)

M2 = cosϒ(ν1 · Π ⊗ Iσ ) + sinϒ(ν2 · Π ⊗ nB · σ), (4)

M3 = cos
(ν2 · Π ⊗ nB · σ) + sin
(I� ⊗ n1 · σ), (5)

M4 = cos�(ν1 · Π ⊗ Iσ ) + sin�(�z ⊗ n2 · σ), (6)

where the angles �, ϒ , � and 
 are arbitrary, n1 and n2 are three-dimensional space-like
vectors satisfying the constraints n1 · nB = n2 · nB = n1 · n2 = 0, and ν1 and ν2 are
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two-dimensional (confined to the (x, y) plane) space-like vectors satisfying the constraint
ν1 · ν2 = 0. Here we have adopted a matrix direct product notation to highlight the separate
K-point space and AB space structure, using the notation {σx, σy, σz , Iσ } for 2×2 Pauli matrices
and the unit matrix that operate within a block (‘AB space’) and {�x,�y,�z, I�} for 2 × 2
Pauli matrices and the unit matrix that operate in K-point space. For example, the operator
α may be written as a direct product α = �z ⊗ σ. Note that the boundary conditions of the
hadron bag model [19], in which elementary particles are confined by a scalar (mass) term at
the boundary, are described by M = ν2 · Π ⊗ nB · σ. Berry and Mondragon [20] considered
‘neutrino billiards’ with a two-component Dirac equation confined by a term proportional to
σz , corresponding to M = I� ⊗ n1 · σ or M = �z ⊗ n2 · σ with either n1 or n2 lying in the
(x, y) plane.

There are two non-equivalent K points that we label as K and K̃. The Dirac equation
is diagonal in K-point space, so that, in the absence of boundary conditions, there are two
right moving (�(R)

K and �(R)
K̃

) and two left moving (�(L)
K and �(L)

K̃
) plane wave solutions

near the Fermi surface of a metallic tube. The solutions �(R)
K and �(L)

K̃
are eigenvectors

of the pseudo-spin component along the tube axis Σ · nB with eigenvalue +s, whereas the
solutions �(R)

K̃
and �(L)

K have eigenvalue −s, where s = ±1 for the conduction and valence

band, respectively. Also, the solutions �(R)
K and �(L)

K are eigenvectors of pseudo-helicity
−iΣ · ∇/|q| with eigenvalue +s, whereas the solutions �(R)

K̃
and �(L)

K̃
have eigenvalue −s.

There are different ways of combining the right and left moving waves in order to create
standing waves. The first possibility is that waves at the same K point combine; that is,
�
(R)
K and �(L)

K form a standing wave with helicity eigenvalue +s, and �(R)
K̃

and �(L)
K̃

form
a standing wave with helicity eigenvalue −s. This situation is realized by the matrix M1,
equation (3), because it is diagonal in K-point space. A second possibility is that waves
from opposite K points combine; that is, �(R)

K and �(L)
K̃

form a standing wave with spin

component eigenvalue +s, and �(R)
K̃

and �(L)
K form a standing wave with spin component

eigenvalue −s. This situation is realized by the matrix M2, equation (4), because it is off-
diagonal in K-point space. A third possibility is a combination of the previous two, with
waves scattered back at the boundary into a mixture of both of the K points. This situation
is realized by the matrices M3, equation (5), and M4, equation (6), because they have both
diagonal and off-diagonal in K-point space parts.

2. Effective mass model

In the effective mass model of two-dimensional graphite [15], the total wavefunction �tot is
written as a linear combination of four components m = {1, 2, 3, 4} corresponding to two
K points µ = {1, 2} and π-type atomic orbitals ϕj(r − Rj) on two non-equivalent atomic sites
j = {A,B} in the unit cell,

�tot(r) =
4∑

m=1

{
�(0)

m (r)− Gm(r) · ∇ + · · ·}ψm(r), (7)

where

�(0)
m (r) = 1√

N

N∑
Rj

eiKµ·Rjϕj(r − Rj), (8)

Gm(r) = 1√
N

N∑
Rj

eiKµ·Rjϕj(r − Rj)(r − Rj), (9)
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are Bloch type functions constructed from the atomic orbitals, Rj is the position of an atom in
real space and the summation is over the number of unit cells N � 1. The functions ψm(r)
are components of the envelope function �(q, r). Substituting this expression for �tot into
the Schrödinger equation and integrating with respect to fast degrees of freedom that vary on
the scale of the unit cell leads to the Dirac equation (1) for the envelope function� where the
K points are taken as K = (±4π/3a, 0) and the components of� are written in the order KA,
KB, K̃B, K̃A. The appearance of the chiral angle of the tube η in the Dirac equation shows
that the axes of the (x, y) coordinate system have been rotated to be transverse and parallel to
the tube axis. Applying periodic boundary conditions to the wavefunction �tot, equation (7),
in the direction transverse to the nanotube axis produces a condition for the envelope function
� that leads to metallic or semiconducting behaviour depending on whether the transverse
component of wavevector q is allowed to be zero [16, 17].

3. Boundary conditions for the effective mass model

In order to obtain hard wall boundary conditions for the Dirac equation, we place an additional
confinement potential at the boundary r = rB,

[−ivα · ∇ + cvM̃δ(r − rB)]� = E�, (10)

where c is a real constant and M̃ is an arbitrary 4 ×4, Hermitian, unitary matrix, M̃2 = 1. The
orientation of the boundary is defined by a unit vector nB normal to it, and we assume that the
wavefunction is zero outside the confined region, but non-zero inside it. Then, we integrate
across an infinitesimal width of the boundary, giving

−inB · α� = cM̃�. (11)

Substituting this equation back into itself, we find the requirements that c2 M̃2 = 1 (thus we
set c = 1) and {nB · α, M̃} = 0. The boundary condition can be written as � = M� where
M = inB · αM̃ , M2 = 1 and {nB · α,M} = 0, giving the result quoted in the introduction
equation (2).

If, in the graphite coordinate system, we define the normal to the boundary as
nB = (sin η, cosη, 0), where η is the chiral angle of the tube, then we may choose
two mutually orthogonal 3D vectors as n1 = (cosη sin ζ,− sin η sin ζ, cos ζ ) and n2 =
(cos η cos ζ,− sin η cos ζ,− sin ζ ), and two additional orthogonal 2D vectors as ν1 =
(cos ξ, sin ξ, 0) and ν2 = (− sin ξ, cos ξ, 0). This introduces two new mixing angles, ζ and
ξ : the arbitrary parameters contained within the boundary conditions describe the amount of
mixing between different discrete symmetries. First, we note that the pseudo-spin of a 2D
graphite sheet does not transform in the same way as the spin of relativistic fermions, because
certain transformations result in a swapping of the orientation of A and B atoms. This additional
operation is described by a ‘pseudo-spin-flip’ operator ρz = �x ⊗ iσz that corresponds to a
reflection in the (x, y) plane of relativistic fermions. For example, an active rotation of the
2D graphite sheet anticlockwise by π/3 about the perpendicular z axis, �(r′) = C6�(r), is
described by C6 = ρz R(π/3) = �x ⊗ exp((2π i/3)σz) where R(θ) = I� ⊗ exp((iθ/2)σz) is
a continuous rotation operator.

Table 1 shows a summary of the discrete symmetries of the boundary conditions in terms
of the orientation of the vectors n1, n2, ν1 and ν2. In addition to ρz we consider parity
P = �x ⊗ Iσ , corresponding to a rotation by π about the z axis (x → −x and y → −y), and
charge conjugation (C) and time reversal symmetry (T ) that involve the complex conjugation
operator combined with C = −i�y ⊗ σy and T = I� ⊗ σy , respectively. The angles ζ and ξ
mix terms with different symmetry with respect to ρz: ζ = 0 and ξ = 0 correspond to evenness
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Table 1. Discrete symmetries of the boundary conditions.

M ρz P C T See in section 4

I� ⊗ n1 · σ n1 = n(x,y) ζu = π
2 −1 +1 +1 −1 M1,M3

n1 = nz ζu = 0 +1 +1 +1 −1 M1,M3

�z ⊗ n2 · σ n2 = n(x,y) ζu = 0 +1 −1 −1 −1 M1,M4

n2 = nz ζu = π
2 −1 −1 −1 −1 M1,M4

ν1 · Π ⊗ Iσ ν1 = ı̂ ξu = 0 +1 +1 +1 +1 M2,M4

ν1 = ̂ ξu = π
2 −1 −1 +1 −1 M2,M4

ν2 · Π ⊗ nB · σ ν2 = ı̂ ξu = − π
2 −1 +1 −1 −1 M2,M3

ν2 = ̂ ξu = 0 +1 −1 −1 +1 M2,M3

with respect to ρz whereas ζ = π/2 and ξ = π/2 correspond to oddness. Since spin and/or
helicity label different states at the same energy, values of ζ and ξ not equal to multiples of
π/2 will lead to broken degeneracy. The angles�,ϒ ,� and
mix different symmetries with
respect to combinations of P , C and ρz . The final column of table 1 shows in which of the
linear combinations M1 (equation (3)) to M4 (equation (6)) the particular symmetry appears;
they are discussed in detail in the next section.

4. Single-particle energy spectrum

In order to illustrate the meaning of the general boundary conditions, we calculate the form
of non-interacting single-particle standing waves created by the boundary conditions and the
corresponding energy spectrum. For simplicity, we will consider only metallic nanotubes with
arbitrary chiral angle η. We suppose that the x axis is perpendicular to the tube axis and we
consider only the zero-momentum transverse mode so that |E | < 2πv/|Ch| where |Ch| is the
circumference. The Dirac equation is diagonal in K-point space, so that, in the absence of
boundary conditions, there are two right moving (�(R)

K and �(R)
K̃

) and two left moving (�(L)
K

and �(L)
K̃

) plane wave solutions:

�
(R)
K = Aeiqy




1
ise−iη

0
0


 ; �

(L)
K = Be−iqy




1
−ise−iη

0
0


 ;

�
(R)
K̃

= Ceiqy




0
0
1

−ise−iη


 ; �

(L)
K̃

= De−iqy




0
0
1

ise−iη


 ,

where A, B , C and D are arbitrary constants, q is the wavevector along the tube and we consider
q � 0 and E = svq , s = ±1. The solutions �(R)

K and �(L)
K̃

are eigenvectors of pseudo-spin

component Σ · ̂ = I� ⊗ eiησz/2σye−iησz/2 with eigenvalue +s, whereas the solutions�(R)
K̃

and

�
(L)
K have eigenvalue−s. Also, the solutions�(R)

K and�(L)
K are eigenvectors of pseudo-helicity

−iΣ · ∇/|q| = |q|−1 I� ⊗ eiησz/2(−iσy∂y)e−iησz/2 with eigenvalue +s, whereas the solutions
�
(R)
K̃

and �(L)
K̃

have eigenvalue −s. In the following we consider each of the four linear
combinations M1 to M4 separately, and we consider a system with the same type of boundary
condition on the right (at y = +L/2) and on the left (at y = −L/2). We introduce an index
u = {R,L} ≡ ±1 to label the right- and left-hand side so that the normal to the boundary,
defined with respect to the graphite coordinate system, is nB = u(sin η, cosη, 0), and we
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take into account the possibility of different mixing angles, �u , ϒu , �u and 
u, and vectors
n1 = (u cosη sin ζu,−u sin η sin ζu, cos ζu), n2 = (u cosη cos ζu,−u sin η cos ζu,− sin ζu),
ν1 = (cos ξu, sin ξu, 0) and ν2 = (− sin ξu, cos ξu, 0).

4.1. M1: diagonal boundary conditions

With the above definitions of the mixing angles, the boundary condition � = M1� produces
the following relations between the components of the wavefunction at the interface:

u sin(ζu +�u)e−iηψAK − [1 + cos(ζu +�u)]ψBK = 0,

u sin(ζu −�u)e+iηψAK̃ − [1 − cos(ζu −�u)]ψBK̃ = 0.

The equations are diagonal in K-point space so do not describe intervalley scattering. With
these boundary conditions on the right (at y = +L/2) and on the left (at y = −L/2), standing
waves at K are created from combining�(R)

K and�(L)
K and are labelled by helicity λ = +s, and

those at K̃ are created from �
(R)
K̃

and �(L)
K̃

and have label λ = −s. We find that

B = (−1)p1 A exp[is(ζR − ζL)/2 + is(�R −�L)/2],

D = (−1)p2C exp[−is(ζR − ζL)/2 + is(�R −�L)/2],

and the corresponding wavevectors are

q(λ=+s) = − s (ζR + ζL)

2L
− s (�R +�L)

2L
+
πp1

L
,

q(λ=−s) = +
s (ζR + ζL)

2L
− s (�R +�L)

2L
+
πp2

L
,

where {p1, p2} are integers such that q � 0. Using E = svq shows that the mixing angles ζR

and ζL break K-point degeneracy whereas�R and �L break electron–hole symmetry.

4.2. M2: off-diagonal boundary conditions

The boundary condition � = M2� is equivalent to the following relations between the
components of the enveloped wavefunction at the interface:

ψAK + u sinϒue+iη−iξuψAK̃ − cosϒue−iξuψBK̃ = 0,

ψBK − u sinϒue−iη−iξuψBK̃ − cosϒue−iξuψAK̃ = 0.

The equations are off-diagonal in K space, so describe intervalley scattering. Standing waves
are created from combining�(R)

K and �(L)
K̃

, with spin eigenvalue� = +s, and �(R)
K̃

and �(L)
K ,

with spin eigenvalue� = −s. We find that

D = (−1)p1 A exp[is(ϒR −ϒL)/2 + is(ξR + ξL)/2],

B = (−1)p2C exp[is(ϒR −ϒL)/2 − is(ξR + ξL)/2]

and the corresponding wavevectors are

q(�=+s) = − s (ϒR + ϒL)

2L
− (ξR − ξL)

2L
+
πp1

L
,

q(�=−s) = − s (ϒR +ϒL)

2L
+
(ξR − ξL)

2L
+
πp2

L
,

where {p1, p2} are integers such that q � 0. The angles ξR and ξL break degeneracy whereas
ϒR and ϒL break electron–hole symmetry.



Boundary conditions for carbon nanotubes 2377

4.3. M3: mixed boundary conditions (i)

The boundary condition� = M3� produces the following relations between the components
of the wavefunction at the interface:

ψAK (1 − sin
u cos ζu) + u cos
ue+iη−iξuψAK̃ − u sin
u sin ζue+iηψBK = 0,

ψBK (1 + sin
u cos ζu)− u cos
ue−iη−iξuψBK̃ − u sin
u sin ζue−iηψAK = 0.

The matrix M3 has both diagonal and off-diagonal in K-point space parts. Standing waves are
created from linear combinations of all �(R)

K , �(L)
K̃

, �(R)
K̃

and �(L)
K . We find that

B = sin
ueisuζu AeiuqL + isu cos
ue−iξu CeiuqL ,

D = sin
ue−isuζu CeiuqL + isu cos
ue+iξu AeiuqL

and the corresponding wavevectors are given by

cos(2q L) = cosβ;
cosβ = sin
R sin
L cos(ζR + ζL)− cos
R cos
L cos(ξR − ξL),

where q � 0 and 0 � β � π . The energy levels are

E = sv

{
β

2L
,
πn

L
± β

2L

}
, (12)

where n = {1, 2, 3, . . .} are integers. The spectrum always has positive–negative energy
symmetry, but broken degeneracy for β �= {0, π}.

4.4. M4: mixed boundary conditions (ii)

The boundary condition� = M4� produces the following relations between the components
of the wavefunction at the interface:

ψAK (1 + sin�u sin ζu)− u sin�u cos ζue+iηψBK − cos�ue−iξuψBK̃ = 0,

ψBK (1 − sin�u sin ζu)− u sin�u cos ζue−iηψAK − cos�ue−iξuψAK̃ = 0.

The matrix M4 has both diagonal and off-diagonal in K space parts. Standing waves are created
from linear combinations of all �(R)

K , �(L)
K̃

, �(R)
K̃

and �(L)
K . We find that

B = isu sin�ueisuζu AeiuqL + cos�ue−iξu CeiuqL ,

D = isu sin�ue−isuζu CeiuqL + cos�ue+iξu AeiuqL

and the corresponding wavevectors are given by

cos(2q L) = cos κ;
cos κ = cos�R cos�L cos(ξR − ξL)− sin�R sin�L cos(ζR + ζL),

where q � 0 and 0 � κ � π . The energy levels are

E = sv
{ κ

2L
,
πn

L
± κ

2L

}
, (13)

where n = {1, 2, 3, . . .} are integers. The spectrum always has positive–negative energy
symmetry, but broken degeneracy for κ �= {0, π}.
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5. Discussion

In this paper, we considered the effective mass model of spinless electrons in single-wall
carbon nanotubes that describes slowly varying spatial envelope wavefunctions�(q, r) with
small wavevectors q in the region of linear dispersion E = ±v|q| near the K points. Taking
into account the two inequivalent K points, the envelope wavefunctions � obey the Dirac
equation for massless fermions, written in terms of four-component spinors, with the role of
spin assumed by the relative amplitude of the wavefunction on the sublattice atoms (‘A’ and
‘B’). We found that energy independent hard wall boundary conditions for the Dirac equation
may be written as � = M� where M is a Hermitian, unitary, 4 × 4 matrix M2 = 1 with the
additional constraint that it anticommutes with the component of the current operator normal to
the boundary. All possible linear combinations of matrices M obeying these constraints were
expressed in terms of a small number of arbitrary parameters, mixing angles, that describe
mixing between boundary conditions with different discrete symmetries. Then, in order to
illustrate how the presence of non-zero mixing angles breaks K-point degeneracy and electron–
hole symmetry, we evaluated the resulting energy level spectra for non-interacting electrons
in finite-length metallic nanotubes and the corresponding standing wave envelope functions.

The intention of this paper was to classify all possible boundary conditions for the
spatially long range envelope functions of a closed nanotube with length much greater than
its circumference L � Lc. The analysis was restricted to energy independent boundary
conditions, although in principle they could be generalized by performing a gradient expansion.
We focused on armchair tubes and did not consider the possibility of edge states that may exist
in zigzag graphite edges [21–23]. Rather than modelling the microscopic details of a boundary,
such as shape or roughness, the nature of the boundary is characterized by mixing angles that
describe the degree of symmetry breaking. In practice, the correct choice of a particular set
of boundary conditions and values of symmetry mixing angles needed to describe a given
nanotube will depend on experimental details and may not be known beforehand. To illustrate
this, we compare our results to the idealized microscopic models of a capped armchair nanotube
and a model of a boundary obtained by setting the wavefunction to zero along a straight line of
atoms. We find that the description of a capped nanotube considered in [13] corresponds to our
off-diagonal boundary conditions M2, � = M2� , with ϒu = 0 or π so that the component
ψAK of the wavefunction is related to ψBK̃ at the boundary. A model of a boundary obtained
by setting the wavefunction to zero, which is equivalent to a particle-in-a-box model [14], also
corresponds to our off-diagonal boundary conditions M2, � = M2� , but with ϒu = ±π/2
so that the component ψAK of the wavefunction is related to ψAK̃ at the boundary. Although
the two models are described by a different mixing angle ϒ , they both correspond to the
off-diagonal boundary conditions, introduce intervalley scattering at the boundary and, in
general, they break K-point degeneracy with the mixing angle ξu dependent on the length of
the nanotube.
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Appendix

In this appendix, we briefly describe the method of finding linear combinations of matrices
that satisfy the constraints on M described by the boundary conditions, equation (2). Any
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4 × 4 matrix may be written as a linear combination of the matrices I� ⊗ Iσ , I� ⊗ (n · σ),
(ν · Π)⊗ Iσ , and (ν · Π)⊗ (n · σ), where n and ν are arbitrary three-dimensional space-like
vectors. The first step is to find all the linear combinations that produce the unit matrix I�⊗ Iσ
when squared:

Ma = I� ⊗ Iσ ,

Mb = cos θ(I� ⊗ n1 · σ) + sin θ(ν1 · Π ⊗ n2 · σ),

Mc = cosφ(ν1 · Π ⊗ Iσ ) + sin φ(ν2 · Π ⊗ n2 · σ),

where the vectors are unit vectors with additional constraints n1 · n2 = 0, ν1 · ν2 = 0 that
ensure that no cross-terms survive. The next step is to find the conditions under which the
matrices Ma , Mb and Mc anticommute with the operator nB · α that is proportional to the
component of the current operator normal to the interface. Clearly, Ma does not anticommute,
so it is discarded. The matrix Mb anticommutes if n1 · nB = 0, n2 · nB = 0 and ν1 = k̂
(M1), or if n1 · nB = 0, n2 = nB and ν1 is confined to the (x, y) plane (M3). The matrix
Mc anticommutes if ν1 and ν2 are confined to the (x, y) plane and n2 = nB (M2), or if ν1 is
confined to the (x, y) plane, ν2 = k̂ and n2 · nB = 0 (M4).
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